之 [4.1] Intermolecular and **Intramolecular Forces**

1

Chemical bonding

Chemical Bonding

 Chemical bond = "chemical glue", attraction (electrostatic force) between atoms, ions, molecules to achieve more stability.

When the **Outer shell** is full it is called a **STABLE OCTET**.

Atoms want to have <u>full</u> outer shell. So they will bond with other atoms to get <u>full *outer shell*</u>.

- There is **2 types** by location:
 - *Intra*molecular *inside* of the molecule

• *Inter*molecular – between 2 or more molecules (*outside*)

Types of **bonding** by electron arrangement

• **Ionic** bonding (total transfer of **e**-from one atom to another)

• **Covalent** bonding – sharing of **e**between two atoms

• Metallic bonding –all e- are shared among all atoms

Intramolecular Forces

- •Bonds between atoms in a molecule
- •2 Types:
 - •Ionic (Metal + Nonmetal)
 - •Covalent (Nonmetal + Nonmetal)

Ionic Bonds

- •One atom gives an electron to another.
- •They now have charges
 - •Lost electron = positive ion
 - •Gained electron = negative ion
- •They are ATTRACTED to each other.

Ionic Bonds

Opposite charges attract in all directions, form a <u>crystal lattice</u>

Ex:

LiCl exist as a cube, with **six** Cl- surrounding every Li+, and **six** Li+ surrounding every Cl-

Ionic Compounds are usually **solid** at room temperature.

Crystal lattice

$$\begin{array}{c} Cl^{-1} \ Na^{+1} Cl^{-1} \ Na^{+1} Cl^{-1} \\ \end{array}$$

NaCl crystal schematic

Covalent Bonds

• Two atoms **share** their electrons

Polar vs Non-Polar Covalent Bonds

Non-polar covalent bond

- a covalent bond where electronegativity difference between atoms is effectively 0 (zero). Actually 0.0 0.4
- •Means an <u>equal</u> sharing of electrons happens.

Polar vs Non-Polar Covalent Bonds

Polar covalent bond

- •a covalent bond where electronegativity difference between atoms is more than 0 (zero). *Actually 0.5 - 1.6*
- •<u>Unequal</u> sharing of electrons
- What about *more than 1.6*? (1.7 2.0)
 It's <u>ionic</u>. Involves *transfer of electrons*

Electronegativity of elements (dimensionless, Pauling scale 0.7-3.98)

1A																
2.1 H	2A											3A	4A	5A	6A	7A
1.0 Li	1.5 Be											2.0 B	2.5 C	3.0 N	3.5 0	4.0 F
0.9 Na	1.2 Mg											1.5 Al	1.8 Si	2.1 P	2.5 S	3.0 Cl
0.8 K	1.0 Ca	1.3 Sc	1.5 Ti	1.6 V	1.6 Cr	1.5 Mn	1.8 Fe	1.8 Co	1.8 Ni	1.9 Cu	1.6 Zn	1.6 Ga	1.8 Ge	2.0 As	2.4 Se	2.8 Br
0.8 Rb	1.0 Sr	1.2 Y	1.4 Zr	1.6 Nb	1.8 Mo	1.9 Tc	2.2 Ru	2.2 Rh	2.2 Pd	1.9 Ag	1.7 Cd	1.7 In	1.8 Sn	1.9 Sb	2.1 Te	2.5 I
0.7 Cs	0.9 Ba	1.1-1.2 La-Lu	1.3 Hf	1.5 Ta	1.7 W	1.9 Re	2.2 Os	2.2 Ir	2.2 Pt	2.4 Au	1.9 Hg	1.8 Tl	1.8 Pb	1.9 Bi	2.0 Po	2.2 At
0.7 Fr	0.9 Ra	1.1-1.7 Ac-Lr								0						N - 18

Intermolecular Forces

•Bonds **between** molecules.

•Not as strong as bonds between atoms inside the molecule.

Intermolecular Forces

Many types, we will learn three
1.Dipole-dipole forces
2.Hydrogen bonds
3.London forces

Dipole-Dipole

- •Results from <u>uneven sharing</u> of electrons.
- •Some atoms don't share well...
- •Maybe one pulls on the electron stronger than the other.

©StephanieDRoeser www.johnlund.com

Dipole-Dipole

•Uneven sharing makes one side a little positive and one side a little negative.

Dipole-Dipole

•The negative dipole of one molecule is attracted to the positive dipole of the other molecule. Cl is slightly negative, H positive

Hydrogen Bonds

- Special case of dipole forces.
- Attractive force between the H attached to an electronegative atom (O, N, F) of *one* molecule and an electronegative atom of a *different* molecule.

Hydrogen Bonds

London Dispersion Force

• Temporary dipoles caused by the movement of electrons around the nucleus.

 Sometimes the electrons are more to one side, or are uneven.

 Makes a temporary dipole, and <u>neighbours</u> are attracted.

London Dispersion Force

- The <u>weakest</u> intermolecular force.
- Cause nonpolar substances to condense to liquids and to freeze into solids when the temperature is lowered sufficiently.
- Bigger molecuite = more e- = stronger London forces.

How strong?

Covalent bonds > Hydrogen bonding > Dipole-dipole interactions > London forces

400 kcal >	12-16 kcal >	2-0.5 kcal >	less than 1 kcal
From this we can see	that normal covalent bond	Is are almost 40 times the st	renath of hydrogen

From this we can see that normal covalent bonds are almost 40 times the strength of hydrogen bonds.

Covalent bonds are almost 200 times the strength of dipole-dipole forces, and more than 400 times the size of London forces.

How strong?

Comparing Forces:

covalent bonds \geq <u>ionic</u> bonds > hydrogen bonds> other <u>dipole</u>-<u>diplole</u> forces> <u>London</u> forces.

Melting point & bonding? How they relate?

stronger chemical bond of one atom to another atom – the <u>more_energy</u> is necessary to break it.

• Thus, *higher* <u>melting</u> and <u>boiling</u> <u>points</u>.

Metallic bonding

- bonds that hold together pure metals (e.g. a piece of pure gold, iron, copper, etc.)
- They are usually **similar** value to slightly *lower* than covalent bonds.
- Thus metals have *similar* melting and boiling points than non-metals.

Metallic bonding

METALLIC BONDS

- Model of a sea of electrons
 - Atomic nucleus surrounded from a sea of e⁻.
 - Metallic shine .
 - Workability.

Metallic Bonds Sample Question

 Explain why the melting point of metals increases <u>across a period</u> and <u>decreases</u> down a column with respect to the changes of atomic radius.

Because of smaller radius, electrons are pulledup closer and metallic structure became more compact, need higher force to separate particles.

Summary

Comparison of the Energies Associated with Bonding (Intramolecular) Forces and Intermolecular Forces								
FORCE	MODEL	BASIS OF ATTRACTION	ENERGY (kJ/mol)	EXAMPLE				
Ionic		Cation-anion	400-4000	NaCl				
Covalent	0:0	Nuclei-shared c ⁻ pair	150-1100	H-H				

Intermolecular forces

H-Bonding
$$-A-H$$
..... $B-$ Polar bond to H-
dipole charge H H H H
Dipole-Dipole $O-H$O-H
Dipole charges 5-25 H-CI---H-CI
Dipole charges 5-25 H-CI---H-CI
Dipole charges 5-25 H-CI---H-CI
Dipole charges 0.05-40 F-F--F
clouds

Practice

□ Ionic Bonds - Draw the Lewis structures for each atom, then show the transfer of electrons and charge for each ion. Write the chemical formula for each compound.

(1) Mg + Br

(2) Pb + S

(3) AI + CI

Covalent Bonds- Draw the Lewis structures for each atom, then draw circles to show the electrons that are shared. Write the chemical formula for each compound.
 (1) H + CI

(2) C + CI

Practice answers

(2) Pb + S

AI ³⁺CI₃¹⁻ → AI CI₃

Practice answers

Covalent Bonds

Homework

- Assignment questions #79-84 page 182-183
- Tomorrow 79-80